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SUMMARY

This document represents an interim report on research performed under Contract No.
F49620-89-C-0084 from the Air Force Office of Scientific Research to Texas A&M University.
The period covered by this report is from July 1, 1989 through July 31, 1990. The research
results obtained are from the first year of a three year effort.

Significant progress is reported on analytical and computational methodology applicable to
dynamics and control of flexible multibody structures structures. Especially significant are the
following:

L(i We have developed new analytical and numerical results pertaining to imposing con-
I straints in multi-body dynamical modeling and numerical simulation. We have developed

an extension of existing penalty methods for constrained multibody dynamics, including
some significant convergence proofs. -These theoretical developments provide a rigorous
foundation for existing penaltyjnethods and lead directly to new methods. Of special
significance are the analytical and numerical studies reported for linear substructuring.

-- fii-We have developed a power principle which permits the efficient construction of
stabilizing control laws for systems described by nonlinear systems of coupled ordinary
and partial differential equations. ! It is not necessary to first spatially discretize the partial
differential equations and-her.fore this approach is immune to the many problems
associated with truncation and spillover, vis-a-vis (for example) the validity of the stability
boundaries. Preliminary, but very promising results have been obtained using this prin-
ciple, including analytical, numerical and laboratory experiments.

(iii) We have initiated a study of symbol manipulation methods to derive polynomial-type
nonlinear feedback control laws for dynamical systems with polynomial nonlinearities. A
general MACSYMA symbolic computer code has been developed and studies are under
way on several test problems. ',This work is in an early stage of development and the
results obtained to date are mixed; we have found several attractive control laws, but for
some systems surprising and as yet not understood failures to converge have occurred.

Since the current report documents the interim results from this study, we anticipate that the
above results will have been significantly extended during the next year. - . /

The Investigators for this effort were as follows: Professor J. L. Junkins served as Project - .. "
Director and Principal Investigator. Professor A. J. Kurdila and Dr. Z. H. Rahman served as
Co-Principal Investigators. Three Graduate Research Assistants (GRAs) participated in this
project: N. Hecht, R. Menon, and S. Hsu. All three of these GRAs are pursuing their Ph. D. 3r
dissertation research and will likely be near completion by the time this effort is completed.

0
Organization of this report is a follows. We have presented the detailed technical results as 0

attachments to this report. We have written the body of this report as a guided tour; following a
brief introduction in Section 1, the sub-sections of Section 2 summarize several contributions
with reference to the attachments. Section 3 provides concluding remarks and discusses some
promising avenues for extending the research discussed in this report. - 4tY Codes
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1.0 Introduction

Dynamics and control of structures research has recently entered an exciting era characterized by
closer coordination of theoretical, computational, and experimental work. This trend is at least
partially in response to the challenge to apply this emerging methodology to actual space struc-
tures within the next decade. A key to accelerating research progress, we believe, is that funda-
mental basic research needs to be blended with some constrained degree of applied research
within the same research effort. This allows some carefully designed "reality testing" to be
carried out early, providing feedback to the researchers inventing the methodology, and to
provide "what it all means" insight for other researchers and the structural dynamics and control
community at large. It is in this spirit that we have undertaken the present research project, and
therefore we iterate between basic theoretical/analytical studies and carrying out constrained,
simplified applications to provide some benchmarks for evaluating the results. In this interim
report, we include fundamental analytical results as well as some of the numerical/experimental
evaluation studies we have done to date. The technical details are contained in the several
attachments.

2.0 Technical Accomplishments

With reference to the attachments, we overview the research contributions. In Section 2.1, we
discuss some significant new results on a generalized penalty method for constrained multibody
dynamics. Using this approach, we show that substructure dynamical models can be married into
a global model without starting over and/or the necessity of inverting large linear systems to
eliminate lagrange multipliers or solve for a reduced set of coordinates. This approach has some
significant advantages over existing approaches. New analytical convergence proofs and conver-
gence bounds are presented in the attachments. In Section 2.2, we summarize results fr, ,n a
method for designing robust, globally stable control laws for nonlinear distributed parameter
systems using a power principle, We show how to use this method, in the attachments, to design
globally stable control laws for near-minimum-time maneuvers of flexible spacecraft. In Section
2.3, we overview some recent work we have done on an approach to use computer symbol
manipulation to derive optimal feedback control laws for nonlinear dynamical systems.

2



2.1 Lyapunov Stable Penalty Methods for Multi-Body Dynamics

While there are many reasons why the simulation of multiple flexible bodies proves such a
formidable task (the existence of multiple time scales for rigid and flexible degrees of freedom,
high dimensionality, a nonlinearly varying generalized mass matrix...) one fact remains after
twenty years of research: no completely satisfactory method has been developed that efficiently
and reliably accounts for the "differential-algebraic" nature of the governing equations. It is well
known that the inclusion of constraints using (Langrange) multipliers can be the cause of severe
numerical difficulties. Researchers in numerical analysis have investigated general integration
schemes applicable to a wide class of differential algebraic equations [Petzold 1,2,3,4]. Other
researchers in the field of multibody simulation have suggested specialized means of detecting
and/or avoiding these inherent conditioning problems, but at a significant computational cost.
These methods include the nullspace methods described in [12], the range space methods in [21],
Gears method [7], a particular implementation of Kane's equations [24] and Baumgarte's meth-
ods [3]. Some of the most novel approaches to appear recently are the formulations derived by
Park [20] and [Bayo 1,2,3]. These methods use a penalty approximation of the Lagrange multi-
plier terms.

2.1.1 Basic Ideas
Penalty methods have been shown to be theoretically sound for certain classes of boundary value
problems, such as the finite deformation of an incompressible elastic body [19]. However,
"typical" hypotheses involved in the proofs associated with these such problems are that

(i) the governing equations are obtained from the Gateaux differential of a coer-
cive functional (i.e., in some sense the functional satisfies a growth condition).

(ii) the Langrange multiplier terms satisfy a form of the Babuska-Brezzi
condition.

It is not difficult to cite examples in multibody formulations of dynamics in which the first
criterion is not satisfied. But one should not conclude that penalty methods will not work for
multibody dynamics formulations, only that the existing rigorous tools for proving existence and
convergence of the method cannot be applied directly.

The fact that penalty methods must be employed with care in application to on linear formula-
tions of dynamics can be illuminated by a few simple linear examples. Consider first the
dynamics of the free-free finite element model of a beam shown in figure (1). The usual means
of obtaining the response of a clamped-clamped beam would be to use the constraint conditions
and eliminate the redundant degrees of freedom, i.e., use a minimal set of generalized coor-
dinates. Alternatively, one can retain redundant coordinates and use Lagrange multipliers to
account for the constraint forces required to impose the constraints. One means of obtaining an
approximate solution to the problem using a penalty formulation is to simply adopt the estimate

3



I

o

* . 0
* C

* o N

I;
p 2 U,

~\ ! H
~. I..

0'

* tu±n.t
- - 0
0 0

0
(~oj) o ADu~nb~I~

0'
L~.

0

U -- I - -- - 1 c
L..

0

0zo
- w

w
0.

fl Ii.0~
z

- U

z
- 0

U

- - ""C

~. ; ; .~

Yvwjj (')4~II

4



(D

1

as is commonly employed in the simulation of constrained, coercive variational problems.

This procedure can lead to serious numerical difficulties in the transient problem as shown in
figures (2) and (3). In this collection of problems, a 22-DOF free-free beam shown in figure (1)
is clamped at the ends using the simple approximation above. In the first figure, the constraint
violation at the ends of the beam is plotted as a function of the penalty parameter e. Clearly, as
the penalty parameter approaches zero, the constraint violation converges to zero as required.
However, figure (3) shows that this approximation of the multipliers introduces spurious fre-
quencies that become unbounded as the penalty term approaches zero. The introduction of these
extremely high, numerically introduced frequencies makes integration of the approximate
governing equations by conditionally stable integration schemes impossible. Just as importantly,
an eigenvalue analysis of the method could reveal that the spurious frequencies are inter-mixed
with the true structural frequencies. In some cases it is difficult to determine which frequencies
are actual structural frequencies, and which are numerical artifacts. While [Park] and
[Bayol,2,3] have provided considerable empirical evidence that the penalty methods can be
convergent and stable, there has been little analytical work to investigate these essential features
of the formulations.

Throughout this research, the class of multibody systems under consideration consists of those
that can be represented by Lagrange's equations

d f T DT + JV = + l
d't T - + -q -Qk D-qk

where T and V are the kinetic and potential energies of the system, respectively, q, k=l..N are

the generalized coordinates, Qk are generalized forces and X,, I = 1 ...D are the Lagrange multi-
pliers. It is assumed that the constraint Jacobian matrix

has been derived from D holonomic constraints having the form

01! (qk) = 0

The dynamical system of Eqs. (1), (2), whose solution is the true motion of the system, is re-
ferred to as the "original, dynamical system."

The approach presented here approximates the dynamics of the original system; we introduced
penalized potential and kinetic energies defined by

5
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1(.T 13i Te = Te (qk,4/k) = T +- 2
(XCI

VE = VC (qk ) = V + 2 DT (XtD

where a and 3 are D X D symmetric, positive definite matrices and (D is a D x 1 column vector
of constraint functions. The subscript c is chosen such that Ene penalty matrices are
parameterized by the variable e > 0.

cc= c (e)

The penalty matrices are most simply selected to be diagonal with

where

130>_ 0

One can also introduce a "Rayleigh constraint penalty dissipation function" via the definition

FE 1

where it is a D X D symmetric, positive definite matrix

g= gt (C)
with entries ordinarily, but not required to be, defined in the same manner as a and [3P~o

9tij =C ;j>_
The penalized potential and kinetic energies, and Rayleigh dissipation function are now used to
generalize Arnold's single degree of freedom developments to obtain a system of equations
suitable for the numerical simulation of multiple degree of freedom multibody systems.

d aTE aT eV aF
dt U k + -J+-qk =Qk

In the attachments [7.1-7.4] it is shown that these equations are kinematically equivalent to the
constraint violation feedback form shown below.

6



d aTe aT, aV e _i

it {pIq-k-- Tqk + - = Qk - Wak {ij NJj + gij dj + CCij 0j}

Notice the qualitative affect of including the energy penalty terms and the Rayleigh constraint
dissipation function is to invoke "feedback control" generalized forces proportional to the
constraint violations and the first two derivatives thereof. It should be noted that the above
formulation encompasses the starting point of the work by [Park], as well as the stiffness, damp-
ing and inertial methods of [Bayo].
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We introduce a generalization of Arnold's convergence theorem:

suppose

(i) T(qk,4k) = T2 (qk ,k)

(ii) V = V(qk)

eq (0) = (0)
(iii ll(0) 41(0)

(iv) d(q(0), 4(0) ) = cD(q (0)) =

5min (a), (;.in (P)*->oo

(v) as e 0

then

(i) E, = E(O) = T, + V, = T(O) + V (0)
jl~b:111+11Dr 12 <2E(0) <- as F -

(ii) ! €(1 +11 112 min (Y, (a), (T,,in( )

(iii) q (- q as 0 * 0

where a ( ) denotes the singular values of().

In addition to the most important convergence properties above, there also exist a wide class of
systems for which the penalized governing equations are guaranteed to be stable in the sense of
Lyapunov. Sufficient conditions for the stability of the penalized equations are summarized in
the following theorem which has been extracted from our results in attachments [7.1-7.4].:

8



Suppose
(i) T(qk4lk) = T2 (qk ,4k)

(ii) V= V(qk) is positive definite in the generalized coordinates

(iii) 4)(0) = (D(0) = 0

Then a sufficient condition that the penalized governing equations are stable
in the sense of Lyapunov is that

-d T td) = -4k N < 0

k

A sufficient condition that the penalized governing equations are asymptotically
stable is that equality holds above only for

41 = 42 = ... =qk =0

ql =q2 =...=qk=0

The physical interpretation of this theorem is that the effects of the constraint penalty is to
stabilize the open loop (Qk = 0) system, since g > 0.

2.1.3 Imposing Constraints in Linear Substructuring via The Penalty Method

The above general results can be sharpened considerably for linear systems. In particular,
an additional theoretical result exploits the analogy between the approximate penalty equations
and symmetric, linear quadratic regulator feedback control. Suppose 1 = 0. In this case, the
governing linear equations can be written

Mq+C4 +Kq=- [gd +]cxD

Mq+C4t+Kq=- [q]T {t[ ql4+ax[q]q}

By inspection the penalty terms can be identified as symmetric feedback control.

From Joshi [ 13], the symmetric, linear feedback for the linear system above is the optimal
feedback associated with the following performance index:

9
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j= f {XTWX + 2XTSU + UTRU} dt
0

or

where X is the 2N vector

With the definition of weight matrices shown in the attachments (7.1-7.4), the performance index
becomes

J (2d T + 24T C4) dt

In other words, when f3 = 0 and the system is undamped, the penalty method maximizes a
positive measure of the rate at which the (desired-to-be-zero) constraint energy is dissipated. We
can also use LQR methods to pursue an alternative path leading to the stability conclusions of
section 2.4.2.

Frequency domain synthesis of substructure models is also possible with the penalty
approach. The undamped eigenvalue problem associated with the linear system is shown in
attachments [7.1-7.41 to be

[[K+[L]Tf w11+ [+ p] [o

If one chooses

10



a = diagonal (- -- ... OC)

Po Po
= diagonal (PO ... PO

P - J c Wl

p 2 =p

where the rows of the Jacobian matrix have been orthononormalized so that P is an orthogonal
projection onto the space of admissable configurations, the perturbed eigenproblem becomes

{E (K + AM) + (o + Xet 0 )P} e = 0

By introducing the abstract angle between a subspace and a vector as

I PI I ICos (P, TOe = II II

an error bound on the convergence of the eigenproblem is derived (attachments 17.1-7.4]) to be

Ia + PO I cos (P, T)
> nin (K + kM)

The application of the approximate eigenvalue analysis described in the last section has
been applied in attachments [7.1-7.4] to a two substructure system having 120 degrees of free-
dom shown in figure (4). Figures (5), (6) have been extracted from attachments [7.1-7.4] and
summarize the accuracy of the spectral estimates for a range of penalty parameters varying over
eight orders of magnitude. The first figure shows that the norm of the rms relative error in all
108 natural frequency approximations remains below 10.3 for all values of e. Figure (6) shows
that the approximate eigenvalues obtained using LSPM had very small relative errors from the
true frequencies. These errors vary from roughly 3 or 4 digits to nearly 10 digits of accuracy for
different values of the penalty parameter. Thus, the method is extremely robust with respect to
the selection of the penalty parameter.

2.1.4 Imposing Constraints in Nonlinear Multibody Dynamics via the Penalty Method

Several simulations have shown that the LSPM are extremely effective for nonlinear
multibody systems. Two significant features of the method make it especially attractive as a
means of constraint stabilization.

11
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The first nonlinear example has been selected to show that the penalty method can be an
attractive candidate for the simulation of systems having configuration dependent singularities.
Such a typical system is the closed loop planar mechanism shown in figure (7). Figure (8) shows
the time histories for E1 calculated by the range space method and penalty method, respectively.
In this example the nonzero constraint violation damping term has been the selected to by y =
60000. As is evident from the diagram, the penalty method remains stable throughout the
simulation, while the range space method eventually diverges at a singular configuration. The
reason for the improved stability when the penalty method is employed is clear from the con-
straint violation plot (9). At each singular configuration, the energy transferred to the constraint
degrees of freedom is rapidly dissipated, so that the norm of constraint violation returns to an
acceptable level. It should be noted that this constraint violation stabilization is achieved at a
cost: as the constraint energy is dissipated after each singular configuration the total system
energy very slowly decreases, instead of remaining at the theoretically constant value. The
author is currently investigating the use of energy-dissipation-rate-matching integration schemes,
such as those in [5]. It is believed that this combination will prove to be a powerful tool for
configuration singular problems.

As a general observation, it should be mentioned that it is not surprising that the penalty
formulation described herein has "regularizing" characteristics; it resembles the method of
Tikhonov regularization employed in singularity-robust pseudo-inverse problems [251.

The utility of the penalty method can be further illustrated in application to nonlinear
multibody dynamics problems. Numerical simulations for a number of nonlinear, natural,
conservative systems have verified the convergence and stability theorems derived earlier.
However, the assumptions defined in the theorem above are somewhat limiting in that the
convergence is guaranteed only for natural, conservative systems. Of particular interest to the
authors are those multibody simulations in which one seeks to control the deployment of the
system. In this section the qualitative behavior of the above numerical procedure for the simula-
tion of dissipative systems is considered.

The example problem is shown in figure (10) is discussed further in attachments [7.1-7.4].
The essential features of the analysis are as follows:

(i) The convergence and stability theorems cited earlier guarantee that a Lyapunov
function can be constructed for the penalized equations.

(ii) The global attractor of the constraint violation trajectories in the phase plane can
be constructed using the Invariance Principle.

Simply put, this theorem asserts that the trajectory of a dynamical system, with a characterizing
Lyapunov function defined on an open set G of phase space, must have an escape time, or
approach the largest positive invariant subset M of

13
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Mc {(qk,4k)e GIL = 0}

For the system considered, the global attractor is shown in the attachments [7.1-7.4] to be the
family of ellipses given by

ic(m + -/a

where K is defined in the attachments [7.1-7.4]. Figure (11) verifies that the above equation does
indeed characterize the limit cycle to which the constraint violation converges. In this case, t =
1= 10000.

Stronger conclusions can be obtained for this problem by noting that

*2 2

1 -+ I=1IK, /(M + K) /a-

and

2 + -2
K2 /(m+3) +  K2 / C

together constitute a particular solution when (see attachments [7.1-7.41)

K1 + K2 =KC

The different limit cycles generated by specific ratios of x and 1 are shown in the attach-
ments. These limit cycles obviously exist for all choices of aX and 13, although the major and
minor axes may be sufficiently small for a particular simulation if the penalty parameters can be
made sufficiently large without encountering numerical difficulties. Evidently, if an initial (or
numerically induced) energy spills into the constraint motion, then it theoretically remains in the
invariant subset of the system. Geometrically, the path of the invariant motions for this example
is a limit cycle corresponding to an elliptical translation (parallel displacement of the bar) without
rotation. Note that only the rotation of the bar is controllable by the feedback torque; the
"constraint degrees of freedom," which lie in the invariant subset, are uncontrollable via the
dissipative feedback torque.

15
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FIGURE (10) SIMPLE 3 DOF SYSTEM BEFORE CONSTRAINT
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2.2 A Power Principle for Formulating Feedback Control Laws

for Nonlinear Distributed Parameter Systems

2.2.1 Basic Ideas

Attachment 1 presents a novel approach we have developed for designing robust, globally stable
control laws based upon a generalized energy-rate (power) principle. The approach is more akin
to classical mechanics than control theory, however it elegantly extends the Lyapunov concepts
used for stability analysis to establish a control law design method. The method will be seen to
be rather democratic in that it applies to partial as well as ordinary differential equation models,
and to nonlinear as well as linear models. It will also be seen to lead to highly robust control
laws which guarantee stability for large families of modeling assumptions, rather than simple
parametric or additive perturbations.

Suppose a structural system is acted upon by m actuators which can impart to-be-determined
control forces (or moments) (u,, u2, ...., u,) , the associated coordinates of the structural loca-

tions at which the actuator acts are the subset of system (linear or angular) coordinates {q,, q2, ...

, qm). The first step in the development requires that the analyst introduce N+l substructures for

the purpose of describing the mechanical system's energy distribution by substructures. The
system's error state (current position and velocity state minus the target state) is defined in terms
of a weighted error energy function having the form:

N
U = X aiEi + aN+jf(qj, q2, ..q,, Cj, C2 .....) (2.2.1)

i-o

where Ei = Ti + Vi is the total mechanical energy of the ith substructure, Ti is the ith substruc-

ture's total kinetic energy, Vi is the ith substructure's total potential energy, and {ao, a,, ... , aN+ )

are the substructure energy weights; these weights will be seen below to parameterize the result-
ing feedback control laws. The function f(q,, q2, ... , q,., c,, c2, ...) is introduced for generality,

because the total energy is not always positive-definite, and in particular, uncontrolled bodies
often have rigid body freedoms which must be eliminated in order to make U satisfy the funda-
mental necessary condition that it is a positive definite function having its global minimum at the
target motion. Note that the c, denote free constants which may be chosen subject to the require-

ment that f remain a non-negative function ot the q's. In the present form of Eq. (2.2.1), it is
implicitly assumed that a zero energy rest state is the target motion, however, more generally, as
developed in Attachment 1, the target state can be a prescribed reference motion. For introduc-
ing the ideas, we retain the simplest form of Eq. (2.2.1). Consider the total time derivative of the
error energy function, this is obtained by differentiation of Eq. (2.2.1) to obtain

dU -N dEi a sf
- = U =I a di - + aN" qj  (2.2.2)

The forces (and moments) acting on the ith substructure can be partitioned into four subsets,

17



corresponding to:
(i) Forces having a potential Va, with V = IVi
(ii) Forces which do no work on the ith sub structure (e. g., internal forces),
(iii) Boundary forces and moments acting on the ith substructure, and
(iv) The control force acting on the ith substructure.

Vectorially, the forces acting on the ith substructure can be written as

Fi VVi + Fnon.workingi + Fbowtdryforcesi + Biu, U =col{u] U2 ... U } (2.2.3)
where Bi is the control influence matrix, and Fb ,.rforces, arises from interaction with adjacent

substructures. From the work-energy principle (applicable with the same generality as Newton's
Laws), we know that the change in kinetic energy of the ith substructure is given by the work/
energy equation [26, 27, 28] t

Ti -To =workj= s u f F i
°Ridt (2.2.4)

substructure/ g o

Substitution of Eq. (2.2.3) into (2.2.4) gives
! ;t

Ei -Eo, I - fFboday force si Ridt + Biu R*idt (2.2.5)
substructure 0 

to
where E, = Ti + VI is the total energy of the ith substructure. The developments of this section

implicitly assume that the potential energy functions are non-negative, for the more general case
modifications are required. Differentiation of Eq. (2.2.5) with respect to time gives the work-rate
equation:

dEi ,d i + Biu poweri (2.2.6)
dt - substructure+

Note that the above discussion can be easily generalized to accommodate boundary and control
moments, we restrict the present discussion to forces for simplicity. A more general discussion
is contained in the attachments. If we restrict the location of the control actuators to be at the
boundaries of substructures, then for a natural system we can show that the total power of the ith
substructure can be brought to the form

mdEi = (ab ij + Aijuj) 4j  
(2.2.7)

dt jl

where Qb. are the generalized forces associated with the boundary forces and moments, and Aou

is the jth generalized control force acting on the ith substructure. The qfs are displacement

coordinates of the actuator locations. Substitution of the substructure energy rates from Eq.
(2.2.7) into Eq. (2.2.2) provides the following result for the Liapunov error energy rate of
change:
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== ai Qbij + I =aiAij uj + aN+ jl i (2.2.8)
iqj

To guarantee that Eq. (2.2.8) is strictly non-positive, it is sufficient to require that each of the m
terms in the []have a sign opposite to 4j. The simplest choice is to simply set each of the []

m

terms to a negative constant (- kj) times 4j , this gives ,= k 2  and results in the follow-
=1 

an

ing system of algebraic equations
N N af
Y ai Qb + Y_-aiA iju + 11N+1 U 4--ki=O ii, i=0(.29

These m algebraic equations can be solved explicitly for the m control functions and we can
establish a stabilizing, constant gain, output feedback control law as

/ 1 N r f N1-s---- + kj 4j + I]aI-Q,+j = 1,2...,m (2.2.10)tt i~aiA a qJ .. ,,
( 1a ) ' fii

Note that the above control law feeds back measurements of position (through the dependence of
f on the q's ), velocity, and boundary forces Qb.. Notice that the constant gains are

parameterized as a function of the energy weights (ai ) and the constants (kj ) and (c, ). Of
course, the freedom to feed back boundary forces is only an advantage if these can be measured
or estimated (via strain gauges or load cells, for example). Observe that the boundary forces on
adjacent substructures will have equal magnitude and opposite sign, resulting in the last sum in
the bracket combining in pairs; for the special case of a "chain configuration", for example, theN

sum has the structure: N aiQi = (aO -al )Qblj+ (a, - a2 ) Qb2 + ..., thus, it is possible

to place constraints on the substructure's energy weights (in this case, ai., = a) to either allow or
eliminate selected boundary force feedback terms; note that the details of this summation is a
function of the system topology and must be carried out specifically for each application. If it
can be shown for the particular system that the generalized actuator location velocities

{//1 , 2 ..., ir } vanish identically only at the target state, then it is evident that V = - j qj2

is globally negative and we therefore have global asymptotic stability of the closed loop system.

The above discussion may appear a little abstract, but as is evident in the presentation of recent
results below, it can be applied in a fairly straightforward way to achieve some very attractive
control laws.

2.2.2 Discussion of Recent Results

With reference to figures 2.1 and 2.2, we consider specializing the above results for a particular
multi-body maneuver problem. The nine body configuration and modeling assumptions are
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2.2 Solution of Problem I

We seek an optimal feedback control law to compute u(x) for
k=-x+aiX2 +u, a>0 (2.2.29)

tf
which minimizes the performance measure J = f (x + u2 ) dt (2.2.30)

0
The Hamiltonian for this system is

H= 2(x 2 + uI)+ X(-x +c xx +u) (2.2.31)

aJH

The Pontryagin necessary conditions are: = - = -x + X - 2oaxX (2.2.32)

=aH
X a =-x-X+ax2

We seek a feedback form of the control law, specifically, we seek the polynomial gains Ki in

N
-U=X= Ki.x (2.2.33)

i=1

Substituting Eq. (2.2.33) and its time derivative into Eqs. (2.2.32), we find the homogeneous
condition

[k, -2K, -K 2 + IIx + [k2 -3(1+K, )K2 +30tKI x 2 +
[k3 -4(1+Kl )K3 " (xKl - 2K2 ]x + ... + [,kN -(N+I)(I+Kl )KN -FN (a,t..... KN-1 )]x"v = 0

Since the above equation must hold at every point in the state space (i. e. , for all x), we conclude
that all [ ]'ed coefficients must vanish independently, this provides the following equations:

kl -2K, -KI +1=0 : K,

k 2 -3(l+Ki )K2 =-3aK K2

k3 -4(1+K,)K 3 =-4cxK, + 2K 2  K3 (2.2.34)

kN -(N+I)(I+K)KN =FN(XK,K2...,KNI ) = KN

Notice the following structure and properties of Eqs. (2.2.34) satisfied by the optimal gains:
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* These equations can be solved sequentially for the Ki, all but the first are linear equations.

* The equations can solved to arbitrary order, since we have developed explicit recursions
for FN.

* The first equation for K,, is a scalar Riccati equation (no surprise here!).

• If we impose cc = 0 and the boundary conditions K,(th) = 0 [consistent with X(tf) =0 as a
transversality condition for x(tf) free], we see that all nonlinear gains vanish identically and

therefore the above is indeed a direct generalization of the classical linear regulator with a
quadratic performance index, the optimal control of Eq. (2.2.33) reduces to u = - K, x.

* If tf- - , analogous to the classical steady state regulator, we can show that all Ki ap-
proach constants and Eqs. (2.2.34) therefore reduce to a sequence of algebraic equations
for the constant gains (we can show that the positive real root is the proper selection for
K,), and the solution for the higher gains involves only simple algebraic operations. For
this case, with c = 1, the first few gains are numerically:

K, = 0.41321, K2 = 0.29289, K3 = 0.17678, K4 = 0.088388, K5 = 0.033145.

Shown below in Figure 2.3 is the performance index versus the order N of the feedback control
and the trajectories of x(t) and u(t) for typical initial conditions [x(0)=1.31. As is qualitatively
evident, the nonlinear terms are constructive and convergence is rapid. We have shown that the
nonlinear controls for N>3 are globally stable, whereas large but finite domains of stability are
associated with the linear and quadratic feedback control laws. This solution has been verified
by the symbolic manipulator code. As we indicate below, the structure of this simplest scalar
example fully generalizes, so that the above observations apply in a much more general context.
However, the stability and convergence issues are problem-dependent, as should be expected.
We have established a means to generate the matrix equivalent of the sequence of scalar equa-
tions ( Eqs. (2.2.34 ) and their solutions for the optimal nonlinear feedback gains

Solution of Problem II

We seek an optimal feedback control law to compute u,(x,, x2), u2(x,, x2) for the system:
Xl = - Xj + XI X2 + 2 + U1

(2.2.35)
x2 = - X 2 + X1 X2 + I + U2

which minimizes

002 CO

J- f .( +u )dt = 1(RQx +uRu)dt (2.2.36)
01 0

Eqs. (2.2.35) can be written as I = A1 x, + A 2x 2 + Bu, Q = R = I (2.2.37)
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Figure 2.1 A Nine Body Configuration

IModeling Assumptions:
Large Rigid Body Rotational Motion6 lFive Rigid Bodies

Pour Uniform Beinm (in-plane bending)
Include Geometric Nonlinearities

Figure 2.2 GeometriclKineatic 
Notations for the Equations of Motion
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I
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I = (±-yO8, +(.j +xO 2
m 3

3

System lagrangian:

Apply the Extended Hamilton's Principle: (aL + sW)dt + BCs POE equ Mtions of motion =

ti
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shown in figure 2.1, and the notation for the motion variables are given in figure 2.2. We seek to
carry out large angle rotational maneuvers and vibration arrest with a single control torque u(t)
input which acts on body 0 about the vertical axis. The resulting hybrid system of ordinary and
partial differential equations of motion are

d20 4
Ih - = U + F, jt=(M0-Solo )i

i' Y .2y d20) n 28 y (2.2.11)

(a Yd d2 ) 4 Y

a2 + Xd 7 )+EI =O +HoT,=1,2,3,4

HOT indicates other (nown linear & nonlinear effects (such as rotational inertia effects, rota-
tional stiffening, foreshortening effects, shear deformation, etc.). The boundary conditions are

at xi = I': yj (t, l.) = O, Dy It. = 0

a3 i 0 +t am2 yi (2.2.12)
at xi = ,: 14 = 0+ 1T, + K-mI"

The total energy of the system (constant in the abseice of control or disturbances) is:

-w [i dEO 22 4 a 2~ Y,, dO Y 2
2E =1 (1, + ' (i + Xa -- i + f EI (2.2.13)

In view of the above energy integral, we investigate the Liapunov function

2U 2 a a, [ jP+t(e lO) 2d + JE1(Y)'dx, + M,(1, ° + M 24, +2U~a01. ( - 7 7T xTi)d, l/''7+t')] (2.2.14)

+ a5 (0 - 0(6)

The positive weighting coefficients ai > 0 allow relative emphasis upon five substructures'

contributions to the total error energy of the system. Note that the open loop system energy
integral of Eq. (2.2.13) does not depend upon the rigid body displacement, the final term is
introduced so that Eq. (2.2.14) has its global minimum at the target final state:

{0, }d,,d = (0, 0) { y,4,.,), at Lu vi = (0, 0), i=1. 2.3.4

More generally, error energy can be measured from a time varying target trajectory U If.

Differentiation of Eq. (2.2.4), substitution of the equations of motion (Eqs. (2.2.1), (2.2.2)), and
substantial calculus leads to
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dU 4

- =o [aou +a (O-Of) +Y1(a,-a 0 ) [ti (2.2.15)
Alternatively, and much more efficiently, we could have written Eq. (2.2.15) down immediately
using free body diagrams and Eq. (2.2.8).

Since we require that 0U5 0, we set the [ ] term to- a6 0 and this leads to U =a6 2 and the
control law:

4
u=_a[a5 (O-f) + a60 + I (ai-a 0 )g/] (2.2.16)

which, again, we could have written directly from Eq. (2.2.10). Thus we see that the following
linear, spatially discrete output feedback law satisfies the sufficient condition (0 < 0) to globally
stabilize this distributed parameter system:

6

U =-[g(O-Oj) + g20+ i J=3g g - a >O, ga> ' gi -- -0>- (2.2.17)

The pervasive dissipation condition that 0 = - a6 62 is strictly negative, for asymptotic stability,
is satisfied only if the system is fully controllable. In the linear case, we find that the anti-
symmetric in opposition modes, (for a perfectly symmetric structure, 4 identical appendages)
have zero hub motion & are uncontrollable by a hub torque actuator -- however, these modes are
also theoretically (assuming perfectly identical appendages and clamped boundary conditions)
un-disturbed for rest-to-rest maneuvers using a hub actuator [26]. It is of significance that we
have proven that the same results [Eqs. (2.2.15) - (2.2.17)] are obtained when we generalize the
physical modeling assumptions above to include any/all of the following effects: (1) shear
deformation and rotary inertia, (2) rotational stiffening and foreshortening effects, (3) any/all
positive semi-definite functionals modeling the mechanical potential energy storage associated
with beam deformation.

The invariance of the form for the stabilizing control law and stable gain region, with respect to
the most common variations in modeling assumptions, represents an important generalization of
the well known robustness obtained using only the positive local velocity feedback term in Eq.
(2.2.17). The physical source of this robustness is the truth that the energy rate is always given
by Eq. (2.2.6), irregardless of whether or not we have correctly modeled the actual system's
physics. Therefore we have essentially restricted the discussion to control laws which cause the
error energy to decrease. The set of system physical models which will be stabilized at the target
state are such that the physically correct energy substructure functionals Ei, when substituted into
Eq. (2.2.1), yield a positive definite functional with its global minimum at the target state. Thus
by rigorously stabilizing a large family of system models by the same control law, we are then
left to hope that the set of stabilized models contains our actual system's physics. It is fortuitous
that almost all beam constituitive modeling assumptions indeed result in a positive beam poten-
tial energy functional which vanishes for zero deformation, and obviously, zero deformation is
the most common target state! Of course the accuracy of the predicted closed loop response
(while stability may be assured) is indeed a function of the degree to which the system is accu-
rately modeled, and clearly the optimization of the control gains is model-dependent.
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For the special case for which the four appendages and tip masses are assumed identical, we have
studied the above control law and the generalizations thereof analytically, numerically, and have
conducted successful laboratory experiments. [see reference 26 and Attachment 3]

2.2.3 Status and Outlook

As is evident from the above discussion and Attachment 1, we have made significant progress on
several fronts: (1) development of a novel approach for designing stable control control laws for
nonlinear distributed parameter systems, (2) analytical and numerical studies of the validity of
the approach for special cases, and (3) laboratory experimental validation of the approach for a
simple multi-body maneuver configuration. The results to date have been very encouraging. We
have also addressed extensions of the basic methodology to permit tradeoffs between competing
measures of optimality such as minimum maneuver time versus minimum vibration measures
(see attachment 3). During the next year, we expect to devote most of our effort to three theoreti-
cal issues: (i) Addressing the issues raised by uncontrollable and/or poorly controllable dynami-
cal sub-spaces of motion (e. g., for a linear structure, uncontrollable natural vibration modes) for
nonlinear systems as a function of actuator configurations. (ii) Extending/modifying the power
principle to consider quasi coordinate descriptions of the system kinematics. (iii) Extending/
modifying the power principle to address non-natural systems for which the kinetic energy is not
a symmetric quadratic form in the generalized velocities, and the potential energy is not a posi-
tive definite function of the generalized coordinates. All three of these theoretical issues will be
studied in the light of simple example structures, motivated by potential practical applications,
with appropriate characteristics to illuminate the salient features of the developments.
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t2.3 Symbolic Derivation of Nonlinear Feedback Control Laws

2.3.1 Basic Ideas

In a somewhat unorthodox, but we trust, effective format, we motivate the symbolic nonlinear
control design approach by first presenting several example nonlinear control problems then their
solutions which we have recently been able to carry to completion. We first state the three
problems, then outline the main features of their solutions. The first two problems are overly
"academic" examples selected because they offer a transparent way to introduce these ideas. The
third problem has obvious practical significance, this example illustrates the use of this approach
to design an optimal feedback control law for the nonlinear spacecraft attitude maneuver
problem. These ideas grew from our historical research documented in references [29, 30].

Three Problem Statements

To illustrate the concepts, we introduce the differential equations and performance indices for
three nonlinear control problems. The first two problems are provided for a simple introduction,
but they have a similar structure to the third problem (large angle, nonlinear spacecraft attitude
maneuvers), and the same methodology readily solves all three problems.

Problem I

Find an optimal feedback control law to compute u(x) for the system described by

t=-x+ccxi +u, C>0 (2.2.18)

which minimizes the performance measure

f t (x 2 + . 2 ) dt (2.2. i9)

0

Problem II

Find an optimal feedback control law to compute u(x 1 , x2), u2(x 1, x2) for the system

.k1 =-Xj + XIX2 +"X2 + U)

+ X2  
(2.2.20)-k2 = -X2 + XI X2 +tXf + U2

1 t2
which minimizes the performance measure J = f + ui ) dt (2.2.21)

20 1=1I
Note that Eqs. (2.2.20) can be written in an alternate matrix format as

I =Aix, +A 2x 2 +Bu , (2.2.22)

with 4=XT=[xi X2],X2=[x1 XI 2 U], UT=[ul u2 ],Al=-[' 0],A2=[0 1
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As we show below, the above notation generalizes to encompass high dimensional nonlinear
systems. The linear appearance of the above notation should not obscure the fact that the system
of Eq. (2.2.22) is nonlinear, note that the vector x2 contains all of the quadratic nonlinear terms.

Problem IIl

Find an optimal feedback law for the control torques u,q, q2, q3, (01, 0)2, 0)3), for i = 1,2,3 to

control the six-state, three-input system described by [ 30] the following system of equations

i1 = [(1 +q2)o + (ql q2-q3 )o2 + (q, q3 +q2 )M ]

q2 = [(q, q2+q3 )o1 +(+qi)o)2 + (q2q3-ql )o]

£73 = [(q q3-q2)(1 + (q2q3+ql) +)( +q)3 (2.2.23)

--. 12 --13

021 (" 0)3 ( 1 U2

00

which minimizes the performance index J = f (xTQx + UTRu) dt (2.2.24)
0

Q, and R are symmetric positive definite weight matrices; the state and control vectors are

x "= [q q2 q3 O)l (02 0)31], UT = [U] U2 U3 1

The q's are the three Rodriguez attitude coordinates [28] and the s's are the three orthogonal
conmponents of the angular velocity vector along principal axes. The u's are the control torques
about the principal axes. The I's are the principal inertias. These equations govern the general,
large angle, nonlinear attitude maneuvers of a rigid spacecraft. An advantage of the Rodriguez
parameters, compared to any choice of three Euler angles, is that no transcendental functions
appear. The above equations are exact, the degree of polynomial nonlinearity is three. Note that
the target orientation of the body (qj = 0) has been selected as the inertial frame.

Equations (6) can be viewed as a special case of the most general nonlinear differential equation
3

.t = ,A i x, + Bu (2.2.25)
i=1

where xi are column vectors containing the 6 linear state variables (x - x,), the 21 distinct

quadratic combinations of the state variables (x2), and the 56 cubic combinations of the state

variables (x3), for above case (as in all others studied to date!), the three A, matrices are very

sparse, as given in detail below.
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Prior to presenting the solutions for the feedback controls for the above three problems, we state
that we have developed a general approach which applies the optimal control necessary condi-
tions (Pontryagin's Principle and Pontryagin's necessary conditions [281), to minimize an index
of the form of Eq. (2.2.24)) and generates symbolically the necessary conditions, and solves these
for the particular set of symbolic differential and algebraic equations governing the optimal
nonlinear feedback control gains for any particular member of the class of nonlinear dynamical
systems described by differential equations of the form

M
X = 2Ai xi + Bu (2.2.27)

i=1

where x is an nxl state vector, u is an nxl control vector, M is the highest degree of polynomial
nonlinearity, x i is a column vector containing all distinct polynomial combinations (of degree i)

of the elements of the state vector x. It is obvious that Eqs. (2..2.27) and the generalized problem
statement embraces a very large class of systems, including all three of the above-stated prob-
lems as special cases, and therefore a large family of nonlinear mechanics problems arising in
structural dynamics and control. The nonlinear feedback controls u are found as direct solutions
of the general necessary conditions for optimal control of the general family of systems described
by Eqs. (2.2.27). Our approach leads directly to symbolic equations satisfied by the optimal
feedback gain matrices G, in the polynomial expansion

N N
U = XGixi, where Gi =-R-'BKi, X = 1Kxi (2.2.28)

i=1 i=1

The degree (N) of the nonlinear feedback control expansion is not restricted to be equal to the
degree (M) of the nonlinearity in the original differential equations (it is fortuitous, as is con-
firmed in the examples below, that N typically required for practical convergence is in fact
usually of low degree, but no universal conclusion can be made). Note that X is an nxl vector of
Lagrange multipliers which arise in the optimal control necessary conditions [30].

It is significant to note that we can find, via symbol manipulation, a set of sequentially solvable,
general algebraic and/or differential equations satisfied by the gains Ki where the matrices Ai, B,

Q, R , or subsets thereof, can appear as algebraic parameters (i. e., we do not first have to first
specify numerical values for the system parameters, or even numerical elements for the weight
matrices); we can leave any subset (or all) of the system parameters as symbols and develop a
sequence of equations which are specialized for the size and sparsity patterns of the matrices of
the particular system of interest. These equations can then be solved numerically for the gains
corresponding to the particular applications of interest. Another way of viewing our result is to
observe that it has been known for several decades that the optimal linear control gains, for a
linear system, are generated through solution of a matrix Riccati equation which depends ex-
plicitly upon matrices A, B, Q, R ; we have conceived of a systematic way to develop the
analogous, explicit, sequentially solvable equations governing the higher order nonlinear feed-
back gains, for the class of systems described by Eq. (12.2.27).

It is apparent that a general realization of this approach would be very attractive, not only be-
cause it makes determination of the equations governing the nonlinear gains relatively routine,
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but also because changes in subsets of the system parameters or weights in the performance
measure can be quickly accounted for by simply changing the desired parameters in the (one-
time-derived) gain equations and then simply re-solving these equations for the new gains. This
approach would be quite impossible, for nonlinear systems of even moderate dimensionality,
without use of modem computer algebraic manipulation. While a given dynamical system might
submit after man-months of algebra and calculus, it would only rarely be implemented success-
fully due to the associated large investment of human effort, elapsed time, and the intimidating
problems raised by debugging the results and integrating this process into an invariably iterative
controller design cycle. It appears evident that a successful implementation of our approach will
make possible routine application of perturbation methods to derive nonlinear control laws, at
least for large families of problems (not merely in principle, but in fact!).

Our first implementation ( using nacsyma ) of these ideas can be applied "fairly routinely"
without requiring intolerable storage or execution time, if the product of MN is less than about
20. Due to the several curses of dimensionality, we do not feel that this approach will prove
practical in the near term if MN is greater than about 40, but this is still encompasses a very large
class of problems. In the applications to date, we have found the matrices involved and the
resulting control gains are rather sparse, it is possible that the curse of dimensionality can be
substantially reduced by introducing (as yet undeveloped) methods to anticipate and take advan-
tage of the sparse structure of the particular problem. Immediate extensions to higher dimensions
can be undertaken, but we feel that effects and problems associated with dimensionality increases
should be studied carefully in the context of a systematic, escalator-styled research effort, taking
time to consider specific applications. This will permit the evolving formulations and computer
implementations to benefit fully from the insights which stem from using the methods on prob-
lems small enough to make the salient features transparent. Since this approach represents a new
controller design methodology, the basic research will no doubt benefit from the analytical and
artistic insights gained from several case study applications. Convergence proofs are not avail-
able for arbitrary systems belonging to the general class described by Eqs. (2.2.27 - 2.2.28), but
convergence will be studied on a case-by-case basis, and we will seek to establish insights on
how to approach resolving the convergence issue for high-dimensioned, high-order expansions.

In order to make the essential ideas easy to understand and to simultaneously display some of the
progress we have made to date, we present the solution details for the first problem as we origi-
nally developed them by hand, these same results have been confirmed and extended using the
symbolic manipulator. For the second and third problems, we provide only solution outlines and
some of the 'end products' of this development, due to space limitations. All three of the above
stated problems have been solved by hand (to low order) to verify the correctness of the symbol
manipulation implementation, we have also successfully completed comparisons of the results
with Carrington's dissertation [29]. We now discuss the solutions of the three problems.
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2.2 Solution of Problem I

We seek an optimal feedback control law to compute u(x) for
.=-x+Cx 2 +u, a >0 (2.2.29)

which minimizes the performance measure J = J(xI + u2 ) dt (2.2.30)
0

The Hamiltonian for this system is

H= (X2 + u 2 ) +X(-x + XX2 + u) (2.2.31)

H=H

The Pontryagin necessary conditions arc: - = -x + X - 2x (2.2.32)

= )H
X =-X _+LXX2

We seek a feedback form of the control law, specifically, we seek the polynomial gains Ki in

N
-u=X= I Kix' (2.2.33)

i=I

Substituting Eq. (2.2.33) and its time derivative into Eqs. (2.2.32), we find the homogeneous
condition
[k1 - 2K, - K2 + I]x + [ 2 -3(l+K)K 2 +3cxK 1Jx 2 +

[k3 -4(l +K1 )K3 +4(XI - 2K2 ]x3 +... + [kN -(N+ I)(I+KI )KN -FN (,K,... KN-1 )IxN = 0

Since the above equation must hold at every point in the state space (i. e. , for all x), we conclude
that all [ ]'ed coefficients must vanish independently, this provides the following equations:

A' - 2K1 - K, +1=0 : K

k 2 -3(1+K 1 )K2 = - 3LKI  => K 2

A3 -4(1+K )K3 = - 4XKI + 2K2 => K3 (2.2.34)

kNj -(N+I1)(I +Kj )KN = FN (a, K, , K2, .... N-l):: KNq

Notice the following structure and properties of Eqs. (2.2.34) satisfied by the optimal gains:
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S These equations can be solved sequentially for the Ki, all but the first are linear equations.

* The equations can solved to arbitrary order, since we have developed explicit recursions
for FN.

* The first equation for K,, is a scalar Riccati equation (no surprise here!).

0 If we impose a = 0 and the boundary conditions Ki(t ) = 0 [consistent with X(t ) =0 as a

transversality condition for x(t) free], we see that all nonlinear gains vanish identically and

therefore the above is indeed a direct generalization of the classical linear regulator with a
quadratic performance index, the optimal control of Eq. (2.2.33) reduces to u = - K, x.

* If t - 0, analogous to the classical steady state regulator, we can show that all Ki ap-

proach constants and Eqs. (2.2.34) therefore reduce to a sequence of algebraic equations
for the constant gains (we can show that the positive real root is the proper selection for
K,), and the solution for the higher gains involves only simple algebraic operations. For

this case, with a = 1, the first few gains are numerically:
K, = 0.41321, K2 = 0.29289, K3 = 0.17678, K4 = 0.088388, K5 = 0.033145.

Shown below in Figure 2.3 is the performance index versus the order N of the feedback control
and the trajectories of x(t) and u(t) for typical initial conditions [x(0)=1.3]. As is qualitatively
evident, the nonlinear terms are constructive and convergence is rapid. We have shown that the
nonlinear controls for N>3 are globally stable, whereas large but finite domains of stability are
associated with the linear and quadratic feedback control laws. This solution has been verified
by the symbolic manipulator code. As we indicate below, the structure of this simplest scalar
example fully generalizes, so that the above observations apply in a much more general context.
However, the stability and convergence issues are problem-dependent, as should be expected.
We have established a means to generate the matrix equivalent of the sequence of scalar equa-
tions ( Eqs. (2.2.34) and their solutions for the optimal nonlinear feedback gains

Solution of Problem II

We seek an optimal feedback control law to compute u,(x,, x2), u,(x, x2) for the system:
±j~ ~~ =x+x X ' 2 + U,

S= -X + XX 2  2(2.2.35)

-t2 =-X2 +X1X2 + x' + U2

which minimizes

J=, J .X(x +u?)dt = (x Q x +utrRu)dt (2.2.36)
0 1-I 

0

Eqs. (2.2.35) can be written as =Alxl +A 2 x 2 +Bu, Q = R =1 (2.2.37)
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where =x=xix]4[XX2 xT=u1  u21, A,=[ 10], A2=[ 101 B=[ 101

IleHamiltonianfunctionis H :1 (xrx + uTu) +XT(Ajx, +A 2x2 +Bu) (2.2.38)

-H =0 ==> u=-BTX

aH TX __2=- - - 2
The Pontryagin conditions are [5] (2.2.39)

k=a =Aix, +A 2x2-BBX
where [x]= [OJ X2 2x20]

We seek to determine the feedback gains Ki in the control law expansion
N N

u -B = IGixi, where X = YKixi , Gi =-BK(
i=1 i=1 (2.2.40)

Substitution of the expansion of Eqs. (23) into the necessary conditions of Eq. (24) and collecting
terms leads directly to a system of two homogeneous conditions of the following form

Fli (Ki )xI + Fg, (Ki )X2 + Flii(KI, K2 )x2, + F12i(KI, K2 )xI x2 + F22i (gl, g2)x2 + ... = 0, i =1,'&'

Requiring these conditions to hold at every point in the state space, we can set the coefficients of
all powers and products of the elements of x to zero. Upon carrying through the algebra, we find
the linear terms yield four algebraic equations F,1 (KI) = F12 (K1) = F21 (K1 ) = F22 (K1 ) = 0,
which are precisely the four elements of the Riccati equation [29, 30]

KjAi +A T Ki -Ki B R-'B T 
K i +Q =0 (2.2.41)

The Riccati equation can be solved for the symmetric linear gain matrix Kj. Setting the six quad-
ratic term's coefficients to zero yields FIi (KI, K2 ) = F12i (KI, K2 ) = F221 (KI, K2 ) = 0, i = 1, 2;
we find that these six algebraic equations are linear in the six distinct elements of K 2 , and can be
brought to the form of the linear system

[L2(Ki)] vec{K2 } = R2 (K1) (2.2.42)
where [l2 (Ki)] is a 6x6 matrix whose elements are functions of K,, R2 (K, ) is a 6xl vector
whose elements depend upon Ki, and vec{K 2 } is a 6x 1 vector whose elements are the six distinct
elements of K2. Obviously, if [L2 (K,)] is of full rank, Eq. (2.2.42) can be inverted for vec{K 2 }.
To conserve space, we do not write out the algebraic equations for the elements of these

matrices. We find that Eq. (2.2.42) generalizes; the higher order gains are determined by a
sequence of linear equations of the form

34



[Lk(KI. K2,..., Kk-)I vec{Kk} = Rk(K K2,..., Kk-1), k = 2,3 .... N (2.2.43)

For the case of particular Ai, B, of Eqs. (2.2.20), and Q= R = I, we have carried through the

above developments and find the following numerical values for the first five control gains (Gi=

-RTK):

al = r 0.41421 0 G2 0 0.39052 0.19526 ]  =-0.12459 0.27022 0.22222 0.090071
1 - 0.41421J' G2 = [ 0.19526 0.39052 0 G3  L0.09007 0.22222 0.27022 0.12459]

4 0.05125 0.17517 0.26213 0.17475 0.043791 G -0.01656 0.08537 0.16605 0.16225 0.08302 0.017071

G _0.04379 0.17475 0.26213 0.17517 0.05125j' G5 10.01707 0.08302 0.16225 0.16605 0.08537 0.01656]

Since this system is highly nonlinear, simply ignoring the nonlinear terms and deriving an
approximate linear optimal control law will be valid only near the origin. In Figure 2.4 we show
graphs of the stable region (shaded) vs N and typical trajectories of the state and control variables
for typical initial conditions, for controllers based upon linear (N=I) through quintic (N=5)
feedback. Notice (as might be anticipated), the linear feedback law does not globally stabilize
this nonlinear system, but it does near the origin of the state space. Including the quadratic terms
modifies the stable region, increasing the stable domain area in the positive (XI , x2 ) quadrant,
but decreasing it elsewhere. Including the third degree terms results in global stability.

There is evidence that outside the shaded region of Figure 2.4b, all even degree feedback control-
lers are unstable, whereas inside this region all controllers with 2<N<5 are stable and converge
rapidly to the optimal control. Using Lyapunov methods, we determined an N=2 globally
stabilizing, sub-optimal quadratic feedback law for this system, but this does not detract from the
significance of the above results, since they generalize fully to the case of higher order systems
with a small number of controllers, in which case no general method exists to construct a control
law for which global stability is guaranteed. Indeed, we believe the ideas we are discussing can
be developed into a widely applicable method for enlarging the stable, near-optimally controlled
region for a large class of nonlinear systems. It is evident that including the nonlinear terms in
the truncated feedback control law is constructive and convergence to near optimal solutions can
be achieved over greatly enlarged regions of the state space. However, careful evaluation of the
solution behavior is still required, there are no guarantees of monotonic convergence.
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WSolution of Problem IH (Optimal Nonlinear Feedback Control of Spacecraft Attitude)

We seek an optimal feedback control law to compute the feedback torque u(x) to maneuver the
system modeled by Eqs. (2.2.23) or more generally Eqs. (2.2.25) to the origin of the state space
(x = 0) in such a fashion that minimizes the index of Eq. (2.2.24). The detailed discussion of this
example is iot given, but is analogous to the solution of Problem IR. The expansions were
carried out to 3rd order via the symbolic manipulator. This is essentially the same system
considered in [29,30]. Here we present only a summary of the numerical solution of the resulting
general symbolic gain equations for the particular system parameters: I, = 1.00, 12 = 0.83, 13=

0.92, Q , R identity matrices, and unit initial conditions on all state variables.

For the first two gain matrices (Gi = - R.BTKi ), where the Ki are from the expansion of Eq.

(2.2.28), we find the following numerical values

1.000 0 0 1.414 0 0 1
GI= 0 1.000 0 0 1.353 0

0 0 1.000 0 0 1.386]

000 0 0 -3184 0 0 -978 0 0 1893 0 0 0 0 0 -2078 0
G2 =-10 - [0 0[ -27640 0 -1118 0 0 0 0 0 02280 0 0 0 0 -. 25040 0 0

0 5948 0 0-1U09 0 0 0 -10630 0 0 0 0 0 0-.2259 0 0 0 01i

Due to space limitations, we show only a few digits and do not display the third order gain
matrix which was also computed. As is apparent, the particular system dynamics, inertias, and
identity weight matrices resulted in sparse gain matrices, this pattern carries over to the cubic
gains. This sparsity pattern is unaffected by variations of the elements in the diagonal inertia, Q,
and R matrices, although, obviously, the numerical values of the gains are affected. The sparsity
pattern of the optimal gain matrices allows us to write down the form of the feedback control law
explicitly, as follows:

U1 = ,(i, )qI + G,( 1 ,4)C0 1 + : (,8)q2 q3 + G2 I1,1 :)q2W q3 022 (1,0)(02

U2 =:G,(2,2)q2 + G,(2,5).02: + : G2 (2,3)q3q, + G2 (2,13)q30)l + G2 (2,6)q103)3 + 02(2,18)0,3(01 :4-

U3 =:G.(3,3)q 3 +Gt(36)0)3.: + :G2 (3,2)qlq2 + G2 (3l5)qIO)2 + G2(3,9)q2C0l + G2(3,17)01(02
.. .. .. .. .. .. . ...................... ............. ..................... . .....

linear feedback terms quadratic (note "gyroscopic" structure)feedback terms 3rd & HOT

While it is easy to conjecture the uncoupled structure of the linear terms in the optimal control
(the linearized dynamical equations are uncoupled), and after-the-fact, the "gyroscopic" structure
of the optimal quadratic feedback is intuitively reasonable, it is more difficult to anticipate the
structure of the 3rd and higher order terms of the optimal control law. The third degree feedback
gains are similarly sparse (only 15 of the 56 elements in each row of G3 are non-zero), but are not

displayed, for brevity. The beauty of the above method is that not only the structure of the
control law, but also the optimal values of the gains can be routinely determined. Of course,
fully populated weight and inertia matrices result in more densely populated gain matrices.
Shown in Figure 2.5 are graphs of the the state and control variable trajectories corresponding to
unit initial conditions (note the initial conditions correspond to large angular velocities about
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Figure 2.5 Perturbation Feedback Controlled Spacecraft Attitude Maneuver
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each axis -- thus the gyroscopic nonlinear effects are fairly pronounced). As is evident in Figure
2.5, we again find very constructive effects, upon augmenting the classical linear control gains
with the optimal quadratic and cubic feedback, it is also obvious that rapid convergence is being
achieved. Even though the quadratic and cubic control contributions are significant, we antici-
pate the fourth and higher order feedback contributions would make negligible contributions.

These results and those obtained in solving the first two examples appear to be typical, the
absence of formal convergence proofs does not usually prevent us from obtaining practical
solutions which do in fact display convincing evidence of convergence with low degree nonlinear
feedback. Especially important is the promise of this approach to make the determination and
revision of nonlinear, near-optimal controls relatively straight forward, so that convergence can
be studied and we can efficiently incorporate system and performance index modifications.

2.3.3 Status and Outlook

As is evident from the above developments, we have made some significant progress in the
development and preliminary evaluation of a new approach to nonlinear feedback control. We
have however encountered several dimensionality - related difficulties. The number of symbolic
operations depends upon the second power of the product MN (M = highest degree of polyno-
mial nonlinearity, N = order of the dynamical system); we have been successful in carrying to
completion the design for several examples for which MN < 20. However, it presently appears
that our present formulation and implementation will not be practical if MN exceeds about 40
due to excessive computational demands. However, we are optimistic that new developments
which adaptively exploit sparsity structure associated with each system (instead of the present
most general approach which initially allows for all nonlinear terms of degree M and lower) will
be developed which will permit higher dimensioned applications.

A more serious difficulty, associated with the lack of stability guarantees, has been encountered.
We have found several examples in which nonlinear controllers of certain degrees were unstable;
this was found after the fact (after the optimality conditions were applied and the gains com-
puted). Unlike linear systems (for a linear controllable system, it can be proven that minimizing
a quadratic index always leads to a stable controller), there is no proof that polynomial (truncated
at some degree) feedback, determined to minimize some positive performance index will stabi-
lize a given nonlinear system. Indeed we have encountered several counter-examples. These
issues will be studied further in the next year.
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3.0 Concluding Remarks

Section 2 summarizes progress we have made on three sets of research problems:

Penalty methods for simulation of flexible multibody dynamics.

A power method for design of output feedback controllers for nonlinear distributed
parameter systems

A symbolic approach for designing full state feedback control laws for dynamical systems
with polynomial nonlinearities. polynomial

On all three sets of problems, we have obtained some fundamental analytical results and have
studied prototype applications to evaluate salient features and the practical potential of the
methodology. In all three areas substantial progress has been made as reported above, and as
discussed in the sub-sections 2.1.4, 2.2.3, and 2.3.3, we are aggressively pursuing extensions to
the results in all three areas of investigation.
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A NONRECURSIVE "ORDER N" PRECONDITIONED
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ABSTRACT

While excellent progress has been made in deriving algorithms that are efficient for certain combinations of
system topologies and concurrent multiprocessing hardware, several issues must be resolved to incorporate
transient simulation in the control design process for large space structures. Specifically, strategies must be
developed that are applicable to systems with numerous degrees of freedom. In addition, the algorithms
must have a growth potential in that they must also be amenable to implementation on forthcoming
parallel system architectures. For mechanical system simulation, this fact implies that

(ii) Algorithms are required that induce parallelism on a fine scale, suitable for the emerging class
of highly parallel processors.

(iii) Transient simulation methods must be automatically load balancing for a wider collection of
system topologies and hardware configurations.

This paper addresses these problems by employing a combination range space / preconditioned conjugate
gradient formulation of multi-degree-of-freedom dynamics. The method described herein has several
advantages. In a sequential computing environment, the method has the features that:

(i) By employing regular ordering of the system connectivity graph, an extremely efficient
preconditioner can be derived from the "range space metric", as opposed to the system coefficient
matrix.

(ii) Because of the effectiveness of the preconditioner , preliminary studies indicate that the method
can achieve performance rates that depend linearly upon the number of substructures, hence the title
"Order N".

(iii) The method is non-assembling, i.e., it does not require the assembly of system mass or
stiffness matrices, and is consequently amenable to implementation on workstations.

Furthermore, the approach is promising as a potential parallel processing algorithm in that

(iv) The method exhibits a fine parallel granularity suitable for a wide collection of combinations
of physical system topologies / computer architectures.

(v) The method is easily load balanced among processors, and does not rely upon system
topology to induce parallelism.
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(1.0) INTRODUCTION

There is no doubt that an effective design process for the space station absolutely requires
that high fidelity simulations of the transient response to control inputs be rapidly
attainable. Much research has been carried out over the past few years that concentrates on
improving the performance of methods for simulating the dynamics of nonlinear,
multibody systems [GluckJ,[Haug],[Singh]. The research has primarily been devoted to

(i) the derivation of more efficient formulations of multibody dynamics, and to

(ii) the derivation of parallel processing algorithms.

Perhaps the most significant research addressing these two areas has been the introduction
of the recursive, Order N algorithms in [Hollerbach],[Featherstone], and their subsequent
refinements in [Bae], [Singh] for systems of rigid bodies. As noted in [Singh), these
methods have the feature that the computational cost of the solution procedure is linear in
the number of degrees of freedom N of the system, while conventional Lagrangian
formulations are of cubic order. The conclusion that the Lagrangian methods are of cubic
order derives from the fact that a system generalized mass/inertia matrix of dimension N X
N must be factored at each time step. Just as importantly, the computational structure of
the recursive Order N algorithms is amenable to parallel computation for some system
topologies. If the system to be modelled has many independent branches in its system
connectivity graph, the computational work required by the algorithm can be distributed
among processors by assigning branches to independent processors. As an example,
figure (1.1) illustrates the connectivity graph for an all terrain vehicle modelled in [Bae].
The processor computational load distribution employed in the paper is likewise illustrated.
Because of the system connectivity and specific hardware architecture, excellent
performance improvements and processor utilization are achieved in [Bae].

Due to these successes for rigid body simulations, it is well-known that many research
institutions are presently investigating adaptations of the original recursive method to model
systems comprised of flexible bodies. No doubt, the result will be highly efficient
algorithms that perform well. Still, three key goals must be resolved before a general
parallel processing algorithm can be obtained.

(i) Algorithms are required that induce parallelism on a finer scale, suitable for the
emerging class of highly parallel processors.

(ii) Concurrent transient simulation methods must be automatically load balancing
for a wider collection of combinations of mechanical systems and concurrent
multiprocessing hardware.

(iii) The transient simulation method should also be amenable to vector processing
implementation on each independent concurrent multiprocessor.

Based upon preliminary investigation, these goals should be very challenging if the
algorithm is based upon an recursive Order N formulation.
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An innovative strategy based upon these -goals is derived in this paper. In part, its
foundation can be traced to element-by-element methods already in use in finite element
solution procedures [Hughes]. As regards sequential computing environments:

(i) The combination range space formulation / PCG solution is an extremely
efficient sequential algorithm for a class of problems described in the paper. The
efficiency is primarily due to the selection of a Block Jacobi preconditioner that is
rapidly convergent.

(i) The method is non-assembling, i.e. , it does not require a large amount of in-
core storage, and consequently is also attractive as a candidate for implementation
on workstations.

(iii) Preliminary studies indicate that due to the rapid convergence achieved by
using the selected preconditioner, the method can achieve performance rates that
depend linearly upon the number of substructures.

Moreover, the method should be readily implemented on parallel processors:

(iii) A vast literature exists on the amenability of the PCG solution procedure to
both concurrent and vector processing.

(iv) The method is relatively easily load balanced among processors, and does not
rely upon system topology to induce parallelism.

This paper focuses on the fundamental dynamical formulation using a combination range
space / PCG solution, and its performance on sequential computing machines. Although
the potential applicatior of the m-thod on parallel architectures is outlined, the details of a
concurrent implementation are presented in a forthcoming paper.
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(2.1) RANGE SPACE / PRECONDITIONED CG EQUATIONS

The range space formulation of dynamics has been derived in the aerospace and mechanism
dynamics research literature in [Placek],[Agrawal],[Kurdila]. Its theoretical foundation can
be traced to the range space formulation of constrained quadratic optimization [Gill]. Still,
despite the fact that it is often less computationally expensive than the nullspace methods,
the nullspace method seems to have received more attention in the literature [Singh,
Wehage, Kim, Huston, Kurdila...]. If the dynamics of a nonlinear, multibody system are
governed by the collection of differential-algebraic equations

[M(q)eg = f (q, q, t) + [C(q)] A

subject to constraints in linear, non-holonomic form

[C[q]] q = 0

the range space solution of these equations are given by explicitly solving for the
multipliers

A=-([C(q)][M(q)] l[C(q)])-1{[C(q)][M(q)]-'f (q,q , t) - e(q, q, t)}

and substituting to achieve a govering system of ordinary differential equations.

q = [M(q) -l{f (q, q, t) -[C(q)J r

{([C(q)] (M (q)]-'[C(q) ]r)-1{[C(q) ][ M(q)]-1f (q,q , t) - e(q, q, t )} ]

In the above equations, the constraints have been differentiated twice to yield

[C(q)]q - d([C(q)])q = e(q, q, t)

Any standard explict-predictor / implicit-corrector, or Runge-Kutta integration scheme can
be applied to these equations provided that the condition number

fic(A) =iax(A)

Am(A)

of the constraint metric

[C(q) I M(q)]-[C(q)] r

does not become too large. The restriction that the condition number above remains small
precludes the possibility of redundant constraints (for example, as associated with
singularities arising from closed loops) and remains an underlying assumption throughout
the rest of the paper.
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One advantage of the range space equations for systems having many independent
structures to be assembled is that the system coefficient matrix is block diagonal and,
consequently, the factorization and back-substitution required to form the product of the
inverse of the mass matrix and a given vector is relatively inexpensive to calculate. It
requires that one calculate the factorization of the individual substructure mass matrices
alone. In fact, one need not even assemble the system mass matrix, and the factorizations
can occur in parallel. Unfortunately, if one subdivides the overall system into finer
collections of substructures (to facilitate the factorization of the system coefficient matrix),
numerous constraints are introduced into the model. As a consequence, one has the
tradeoff shown in figure (2.1.1).

The approach taken in this paper is to finely subdivide the system to be modelled, and thus
accrue the benefits of having a system coefficient matrix with smaller block diagonals, but
also employ a solution procedure that ameliorates the cost associated with the increasing
dimensionality of the constraint metric. Specifically, the calculation of the Lagrange
multipliers in

2 =-([C(q)][M(q)]- [C(q)]r)-'{[C(q)][M(q)]-'f (q,q t) - e(q, q, t

is carried out using the preconditioned conjugate gradient procedure.

(2.2) THE PRECONDITIONED CONJUGATE GRADIENT SOLUTION

The preconditioned conjugate gradient procedure is an "accelerated" variant of the classical
conjugate gradient procedure. If it is required to solve the linear system of equations

Ax= b

the procedure can be summarized from [Golub]

X0 = 0x=O

ro=
For k = V,.. n

I f r k-=0

then
X = Xk_ 1

else
Solve Oz,_j=ri_

Ok = Zk,1 rk / zk- 2
r r k 2

Pk= Zk-1 + lk Pk-1

a = z _1r r _/ PkT APk
X k Xk 1 + akp

r k r _l- k APk
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Careful inspection of the algorithm shows that the most computationally expensive tasks in
the procedure are the

(i) calculation of the product of the coefficient matrix A and a given residual
vector,

(ii) and the solution of a linear system of equations requiring the factorization of the
preconditioner 0.

The rate of convergence of the preconditioned conjugate gradient algorithm is accelerated
by employing a user-defined "preconditioning matrix." This matrix must have two
properties to be an effective preconditioner:

(i) It must be relatively easy to factor.

(ii) It must be an approximate inverse to the constraint metric in a sense to be made
precise below.

The reason for employing the preconditioned conjugate gradient solution method is that the
convergence rate of the conjugate gradient algorithm (that is, with 0 = I) is governed by

IX - 2k

lix -X011A 1+Vi()
A

Thus, the rate of convergence of the algorithm improves as the condition number

ic (A)

decreases. The reference [Golub] has shown that the convergence of the preconditioned
conjugate gradient method is governed by the same expression, but with A replaced with

1 1

A= 02 A0 2

Clearly, if the preconditioner is identical to the coefficient matrix, then the condition
number of A is minimized. Hence, the preconditioner is sought such that its inverse
approximates the inverse of the coefficient matrix. Many methods exist for the calculation
of preconditioners [Golub]. It should be noted that while the motivation for the use of
many of these preconditioners is mathematically sound, the final choice invariably involves
some heuristic.
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I
(2.3) THE CHOICE OF THE PRECONDITIONER

The choice of the preconditioner employed in this paper is based upon the following
assumptions regarding the structural/mechanical system to be modelled:

(i) The system closely resembles a series of chains of bodies

(ii) The number of interface degrees of freedom is small relative to the number of
interior degrees of freedom for a substructure.

(iii) The system does not contain any closed chains.

To a large extent, these assumptions have been driven by the physical structure of the space
station in its assembly complete configuration.

The preconditioner for the system constraint metric is based upon the topology of a chain of
substructures as shown in figure (2.3.1). If

dxN

[C (q)] E R

denotes the constraint matrix connecting two bodies at the ith interface, the system
constraint matrix has the form

[CI]]

[C(q)]= : r.C,= R: N

-[C k]

The system constraint metric can then be written

[C [ MK -1tec) ... [cl[M] '[ck] r

lc,][ M] -'[cjr

[C 1][M]-'[C1 r  ... [C,][M]'[C,] r

Based upon the structure of the constraint metric above, the preconditioner is selected to be
the block diagonal matrix
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IT -1 -1

[c,][M] [c,

Although the off-diagonal blocks
[C (q)M(q)]-'[C, (q)]T = 0

(for i not equal to j) are not generally identically equal to zero, this choice of preconditioner
is shown to be extremely efficient for the class of problems described in the next section.
Furthermore, this preconditioner satisfies the two essential criteria of good preconditioners:

(i) It is block diagonal, with small diagonal blocks, and is relatively easy to factor.

(ii) It has an inverse that provides a good approximation to the inverse of the full
system coefficient matrix.

This latter conclusion results from the well-known fact [Wittenburg] that the directed graph
representing the connectivity of an open loop system can be regularly ordered. The regular
ordering results in a system constraint metric that has a reduced bandwidth. That is, many
of the off-diagonal blocks

[C (q)[M(q)]-'[C (q)l T 
= 0

are identically zero for i>>j. The choice of preconditioner shown above is often denoted
the Block Jacobi preconditioner and is known to be highly effective for classes of systems
of equations arising from elliptic partial differential equations [Reid].
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t(3.1) SPACE MAST SIMULATIONS

To establish the efficiency and performance of the combined range space / PCG algorithm,
several transient simulations have been carreid out. The first such simulation has been
designed to answer two key questions regarding the feasibility of the approach for
multibody structures:

(i) How efficient is the selected preconditioner and how does the preconditioner
improve the effectiveness of the conjugate gradient iteration processes as a whole?

(ii) How efficiently can the range space / PCG solution for the transient response
be carried out? In particular, what is the computational cost of solving the"constraint metric" factorization at each time step?

These two questions, that is, preconditioner efficiency and constraint metric factorization
were judged to the crucial computational "bottlenecks" for the algorithm as a whole.

The two substructures selected for evaluation of the algorithm in studying its feasibility are
shown in figures (3.1.1) and (3.2.2). The first structure is a 63 degree of freedom Z-truss
substructure comprised of rod elements generated by MSC PAL. The second assembly is a
54 degree of freedom X-frame substructure comprised of three dimensional beam elements
generated by the same program. Figures (3.1.3) and (3.1.4) illustrate that a remarkable
convergence rate is achieved using the preconditioner derived from the regularly ordered
graph of the constraint metric. In figure (3.1.3) the number of iterations required by the
preconditioned conjugate gradient algorithm to converge to a tolerance of 1.e-14 of the true
solution is plotted versus the number of degrees of freedom on the horizontal axis. Thus,
the number of flexible degrees of freedom on the horizontal axis varies from 126 to 504 as
substructures are contilevered end-to-end. As clearly illustrated in the diagram, the number
of preconditioned conjugate gradient iterations remains constant, and equal to 3,
independent of the number of total degrees of freedom. The other line plotted on the graph
is the analytical upper limit to the number of iterations required in the conjugate gradient
method. Completely analogous results are depicted in figure (3.1.4). In this case the
number of total flexible degrees of freedom in the structure varies from 108 to 324, and the
number of iterations of the preconditioned conjugate gradient algorithm required to achieve
convergence to a tolerance of 1.e-14 is plotted on the vertical axis. Again, independent of
the number of degrees of freedom, the number of iterations remains constant and equal to
4. Consequently, one can conclude that the algorithm for generating the preconditioner is
indeed extremely efficient, for the test problems simulated.

Figures (3.1.5) and (3.1.6) depict the total time required per time step to solve the
"inversion" of the system constraint metric. Figure (3.1.6) depicts the corresponding
results for the Z-truss, while figure (3.1.6) depicts the results for the X-frame. In both
cases it is clear that the simulation grows linearly as a function of the total number of
flexible degrees of freedom. To the authors' knowledge, no such result for flexible bodies
has been presented to date.

In later scctions, while considering the amenability of the overall solution procedure to
parallel processing, it is crucial to consider where computation time is spent during a typical
time step. These results are shown in figure (3.1.7). This figure shows that two steps
dominate the time spent solving the range space / PCG solution procedure:

(i) the time spent forming the product of the inverse of the system mass matrix and
a given vector, and

73

il _ _ -



(ii) the time spent applying the inverse of the preconditioner to a given vector.

As will be discussed in more detail in a later section on applications in parallel processing,
these two steps are easily parallelized because of their block diagonal structure, and should
yield excellent improvements in performance on concurrent multiprocessors.
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ITERATIONS AS A FUNCTION OF SUBSTRUCTURES
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ITERATIONS AS A FUNCTION OF SUBSTRUCTURES
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Range Space Metric Factorization - Breakdown
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Time Integration (1008 DOF, O(h**4) RK)
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Time Integration (1008 DOF, O(h**4) RK)
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Computational Cost /PCG Solution of Constraint Metric
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(3.2) SPACE STATION SIMULATIONS

While the simulations of the truss structures in the last section answer important questions
regarding the efficiency and performance of the PCG algorithm, it remains to be shown that
the method is robust in problems that do not enjoy such structure in form. By analogy, one
can liken the addition of identical substructures with identical interfaces to the solution of
Poisson's equation on a rectangular grid: many methods exist that will have "remarkable"
convergence rates for such highly structured problems. Unfortunately, the performance
degrades rapidly as more general problems are considered.

In this section, the simulation of Space Station Freedom in the assembly complete
configuration is considered. Qualitatively, the simulations described in this section differ
from those in the last section in three important respects:

(i) the number of degrees of freedom per substructure varies,

(ii) the constituent substructures matrices are not identical in general (although
some occur in symmetric pairs about the core body),

(iii) the number of degrees of freedom between substructure interfaces varies.

The model employed is a simplified version of the full finite element model for the
assembly complete space station shown in figure (3.2.1). The space station is subdivided
into 13 individual substructures having from 90 to 150 degrees of freedom each. The
number of constraints per interface varies from 24 to 36. The first simulation considers
only the central bodies 5 through 9. Blowups of these five bodies are shown in figures
(3.2.2) through (3.2.6), and their position in the assembly complete station is shown in
figure (3.2.7). A concise summary of the results of several simulations is given in figures
(3.2.8) and (3.2.9). Figure (3.2.9) plots the total time per integration time step versus the
number of degrees of freedom in the model. The model is assembled from left to right, so
that data points are plotted for systems comprised of 2, 3, 4, and 5 substructures. The
largest model considered is comprised of nearly 500 degrees of freedom. Because the
number of degrees of freedom per body and number of constraints per interface varies with
the addition of each set of bays, the computational cost plots are not exactly linear as in the
space boom simulations. Still, a linear curve fit describes the timing data well for all the
simulations considered. As in the case of the space boom simulations, a very large fraction
of the overall simulation time is spent

(i) calculating a product of the inverse of the mass matrix and a given vector,

(ii) calculating the product of the inverse of the preconditioner and a given vector.

As noted earlier, both of these matrices are block diagonal and trivially parallelizable.
Hence, the potential for implementing the method in a parallel environment is very
promising. Figure (3.2.10) depicts the number of PCG iterations versus the integration
time history. As in the previous example, the selected preconditioner is extremely
effective, and requires 4 iterations for convergence, essentially independent of the number
of degrees of freedom in the model.
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Space Station Model - 5 Substructure Breakdown
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ABSTRACT

While earlier papers have studied the convergence properties of Lyapunov stable penalty methods
(LSPM) as applied to spectral approximations, the current paper investigates the existence and con-
vergence of penalty approximations when applied to transient analysis. This paper makes use of
standard techniques in the analysis of linear, hyperbolic partial differential equations to show that
a sequence of solutions generated by the Lyapunov stable penalty equations approaches the solu-
tion of the differential-algebraic equations (DAE's) governing the dynamics of multibody prob-
lems arising in linear vibrations. Specifically, the analysis relies upon

(1) the existence of Lyapunov functions for the class of problems considered,
(2) standard operator norm approximations of orthogonal projections onto the range of the
transposed constraint matrix,
(3) the application of Gronwall's inequality to show that the sequence of approximate so-
lutions remains bounded for compact intervals in time.

The analysis is quite general in that no assumption is made that the system be natural or completely
integrable. The result of the analysis is the derivation of an explicit variational relationship between
the norm of the constraint violation time history and the error between the solutions of the true and
approximate penalty equations. For linear, undamped multi-degree-of-freedom equations this re-
lationship takes the form

lim { j K (X - X )I } ll PX 11 a, Il !I
--0

In the case of damped multi-degree-of-freedom equations, the variational relationship is

lim {1C(X- XIE)1 1IK(X-XE)I) <  1 +PXrl 11PXEII alllell 4bi,
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(1.0) INTRODUCTION

The difficulty that may arise in numerically integrating systems of differential-algebraic equations
is well-documented [Gear],[Wehagel. Numerical pro:edures intentionally designed for as general
classes of DAE's have been the topic of much research over the past two years by numerical ana-
lysts [Gear],[Burragel,[Alexander].

In computational mechanics, on the other hand, methods have arisen that utilize the fact that the
particular system of differential-algebraic equations to be solved have been derived from Lagran-
gian or Hamiltonian formulations of dynamics. Examples of this type of approach are given in
[Bayo 1,2,3], [Park], [Kurdila]. Essentially, all of these methods approximate the system of gov-
erning differential-algebraic equations by an altogether different dynamical system; one that has
been obtained via penalty perturbation of the Lagrangian or Hamiltonian for the system.

While all of thes papers present considerable empirical evidence that the penalty methods are stable
and convergent, little analysis has been conducted to establish this fact. Because the governing
equations are neither linear, nor coercive in general, standard results as in [Oden 1 or [Oden 2] are
not directly applicable. Simple, but effective error estimates for spectral approximations using the
penalty method have been presented in [Kurdila]. Nonlinear stability and convergence criteria are
considered in [Kurdila 1], [Kurdila 2], but rely upon the restrictions that the governing system be
natural, and in some cases conservative. In the latter case, much of the arguments presented are
based upon the underlying Hamiltonian structure of the systems considered.

The purpose of this paper is to investigate convergence criteria for linear multi-degree-of -freedom
systems arising in linear vibrations. The analysis that follows is quite general in that it does not
require that the system be conservative. No restriction on the form of the forcing term is enforced
other than it is L-integrable on bounded intervals of time. The paper concludes by deriving vari-
ational statements that bound the error in approximation by the norm of the constraint violation ob-
tained in the approximate solutions. These variational statements are of great practical importance:
they imply that by monitoring the constraint violation one can be assured that the solution is accu
rate. One should note that this result is not true in generalfor nonlinear systems! For the nonlinear
case, bifurcations as described in [Kurdilal can occur in which the constraint violation remains
small, but the penalty solution diverges from the true solution.
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(2.0) LINEAR, UNDAMPED EQUATIONS OF MOTION

(2.1) Original Equations
As a starting point for the analysis, we consider the system of undamped, second order ordinary
differential equations subject to holonomic constraints

Mx+kx = ]

where

[']x 0
Fx

[']x=o

and the dimensions of the constituent matrices and vectors are

xE RN

C~e RD

XED FE R4 e R N x N

X. R°

Ke R N x N

FX7. ]E R
D xN

As is usually encountered in linear vibration equations, M is symmetric, positive definite, and may
be considered to have been generated by consistent finite element formulation (as opposed to a
lumped formulation). The stiffness matrix K is assumed to be symmetric positive semi-definite,
and the constraint matrix is constant. To simplifly the analysis, we introduce the following change
of variables

A -1f2 -1/2

K=M KM
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M^1/2

12.

~X=M x

F=M F

With these definitions, the governing equations take the simple form

X+KX = [D] X+

while the constraints become

No generality is lost in assuming the equations have this form, while considerable simplification is
achieved in the derivations that follow.

By differentiating the constraints, and defining the orthogonal projection P onto the range of the
transposed constraint matrix

L T=
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the governing equations can be expressed in constraint-reactionless form

X+ (I-P)KX= (I-P)F

X+QKX=QF

In the above equations,

Q = I-P

is the orthogonal projection onto the space of admissable configurations.

(2.2) Undamped Penalty Equations

While several forms of the penalty equations have appeared in the literature [Arnold], [Bayo 1,2,3],
[Kurdila 1,2] and [Park 1], the form chosen here can be derived as in [Bayo] or [Kurdila] from the
penalized kinetic and potential energies

T= 1*T+ 2 i J~

2 + e

T= XTKX+ 1

The penalty form of Lagrange's equations

LE =TE V

CF

then result in

1 ri 1T {i + wI+F
+ KXE = - X { -L j
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X +KX= j[ jx- [ jx jx +,F

-IpT

{i+~[~] []}x ~ [,] [,D[]j }XeF

It is easy to verify that [Albert]

1+1 7

+I VXLOJ

is invertible for every e>O, and that

I a-TF9 I 7 -1 [r]T[ra] -I

This identity allows one to rewrite the governing equations

X+ [I+ rrT@ -- aro T F aTr]-
x c+l.Vx L x] aK+Lx a Jx  =  El+ DLXJ LjX

in the equivalent form

1
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By carrying out the multiplications

+ Et rD KX +a {c + [aD1]TafD] -I a ]+ R_+t f lax]}  Ex+ [y [a] a: x

[ LD( ]T[L 1

the equations can be written in symbolic form as

XE + Q (C) KXE + aP (E) =Q () F

where we have introduced the definitions

Q(E) =C{E+L3 O L

FD(Q1 T D( 1 1r T DP M + -¢ - ] -1 [ V]r I[;'x]

One should note that

I-P( () = Q(e)

and that

P- P (E)

Q Q (e)

in the bounded linear operator topology.
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(2.3) Boundedness of Penalized Solutions For Undamped Case

Before establishing the convergence of the penalty approximations, it is first necessary to show that
the approximations remain bounded

IIXr (T) - !

11 Xc(T) 11!5C 2

for any arbitrary, fixed final time T. To this end one can take the inner product of the penalized
governing equations with the derivative of the penalized solution to obtain

r -,0a 7-T Iroa 7 T a ~ r (
I+~ ~ + X)(K~~ + 9, 9,) =(F, 9F)

This expression can be re-written in a time rate of change of energy form:

d + (KXcXE) +

-T -oTr~o- -.T aetr XT}qra

E LX] LaXJ£(LX)aJE
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t I A single integration in time yields

(t) 12+ (KXc (t),Xc(t) )

+ T (t ([j ]g, (t) + I-XT(t) FiL]X, (t)~
(0xE) 11'+ (KX, (0), X, (0))

+ ~~ ~ X (+(o ~ f] x0) (L]L]XEr)

J ,)(F ('t), gX (t)

But since all penalized equations are required to satisfy the constraints,

axl--, xo= LaIXE(o) 0

the energy expression becomes

£j gr (t)$1 + (KXE (t), XE (t)

+ .T FO + (X [ ]
1c 0) (o'i+ (Kxc (o), x (o)

+ 'F (T) IgE (r) )dT
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In particular, this implies that we can write the inequality

(1,ke (t) 112 + (KX (t), xc (t) )

< 1(o) 211'+ (KXE (0),X (0))

0f' 11l F (,r)I lx ¢ ldr

But by using the (trivial) form of Minkowski's inequality [Oden]

21ab! < a2 + b2

one can write

1 2) + (KX (), X ()

12 (KXE(,X (O) )

+_ . F () dt + J ()

20

112 + I (KX5(t),X Et)

< { ,X (O) jj2+ (KX¢(O),XF(O)) + j~F'tl~x
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Finally, one can write the energy expression in a form appropriate for the application of Gronwall's
inequality [Wlokal

(t)) 1+(KXE(t),X (t)), (

Application of Gronwall's inequality to the above expression implies the desired result that the pe-
nalized solution remains bounded

for a fixed time t, 0<t<T.

(2.4) Variational Dependence of Error on Constraint Violation

With the above result implying that the solution of the penalty equations remains bounded, one can
now derive a relationship between the error in the penalty approximation
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and the norm of the constraint violation

11XII= D E F j

Subtracting the original, exact equations and the penalty form of the equations, one can obtain

X -XE+ QKX- Q(e) KX

= (Q-Q(e))F+ccP(e)X,

By the addition and subtraction of identical terms, and by employing the triangle inequality, one
can %write that

iX-x X+ Q - Q (e) 11 gxF!t + I Q1 11K (X- XE)

Q - Q (E) 1 li F11 + all PXCII + rII P (E) - P11 IIX I

Using the uniform convergence of P(s) to P, the fact that the solution of the penalty equations re-
mains bounded, the final variational error inequality is achieved.

lim +,X X- i i (X - XE) 1 t ---alIPX I 1 -a tl l1
E -+0
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(3.0) LINEAR, DAMPED MDOF EQUATIONS

(3.1) Original, Exact Equations

The derivation of a corresponding variational statement for the case of damped, MDOF systems
follows in much the same manner as the strategy empolyed in the undamped case. In this section,
the governing system of differential-algebraic equations are

T

F~ a(D X _

where, as in the undamped case,

x e RN

ME RNxN
Xe R D  

KE R N Y
N

"-a(D- ER O×N e7eRNv x

The same assumptions regarding the properties of the mass, stiffness and constraint matrices are
employed in the following arguments, as well as the stipulation that the damping matrix is positive
semi-definite

(ex, x).>-
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With the identical change of coordinates employed in the undamped equations, one can consider
the system defined below without loss of generality:

9+CX+KX = ,,]T)'+F

Jx 0

The new system of reaction-free equations now contain a term representing viscous damping

X+ (I-P)CX+ (I-P)KX= (I-P)F

X + QCX + QKX = QF

(3.2) Damped Penalty Equations

The penalty formulation employed in the case of a damped, linear MDOF system has been selected
as in fBayo] and [Kurdilaj. In addition to the penalized kinetic and potential energies, a generalized
Rayleight dissipation function is introduced

Te =I xx + - 5

FE =2X X + -

202
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The penalized form of Lagrange's equations is consequently

Le = Te - VC

daLe. D, aL C

dt j -ax + x F

The viscously damped version of the feedback form of the penalty equations are

Xe+CXE+KX E = -b b +p + } +F

-D1 a (D-a ! T~rr , '4 TaO F
f --+ f-I}¢ + - I{C+a[(] " }X

+_ a J + + LXx=F

XE + Q (e) CX + Q (E) KXE + p.P (E) XE + caP (.)XE = Q (e) F

(3.3) Boundedness of the Solutions of the Damped Penalty Equations

Again before estimating the error in the approximation, as in section (2), it is necessary to establish
that the solution of the penalty equations corresponding to damped system is bounded

P~e(t) 1 2

for any arbitrary, finite time O<t<T.
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Taking the inner product of the damped penalty equations and the derivative of the penalized so-
lution, one can write a time-rate-of-change of energy as carried out in the undamped analysis.

df XI+(KX, Xc)}I +

d 1 .T (rr -t e +°C7Tra X7 +

dz 2c (A aX -X) jXE( _ ]

(CX ,Xt)+ 2r T( -_ @ (F,

Because the damping matrix C is symmetric, positive semi-definite, one can write the inequality

d l)-lt x + (KXEX)} +

d { T 7 . DT Fa ( a T 0[I07 Ta)7A} x C--j ! + 1x E (Lax I LxI ) X , } - (F,Xt)

Following precisely the same steps as in the analysis of the undamped case, one integration yields

Ilt ,)[ 2  ](KXE ()XE (t))

e 2 1 1, 2

0{ 09CO)E ( dt&

2 ~ (XEr ++K 2)X~r)d

2, , x g (, + 1 E (T) II1 + =c (Kt), Xe (r) )) dr
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which enables one to apply Gronwall's inequality to conclude

(KXr(t), XC (t) ) K 2

for a fixed time O<t<T.

(3.4) Variational Dependence of Error on Constraint Violation

The final variational relationship between the constraint violation and the approximation error can
now be achieved by subtracting the exact, reactionless equations and the penalized equations.

Xk-9E + QC - Q (E)CXEc
+ QKX - Q () KXE

(Q-Q (E))F+P()Xr + LP (e) XE

As in the analysis of the undamped equations, the addition and subtraction of identical terms and
the application of the triangle inequality enables one to write

X - XEJ + Q - Q (E) cXvc + Q11 (X -,)

<- ;i Q - Q (E) 111t! FI! + allPIIPd + atll P (c) -PlI IIXE il
+ g;! PXCI! + gtip (F) - Pil 119,1!

In the limit as e approaches 0, one can use the fact that

Q(E) --+ Q
P(E) - P
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in operator norm and the boundedness of Xe to obtain

lrn { X, -X + C (-X)+ j K (X - X,) }1 5 CLjjPXEI + jji PX,1 a, 11 + 'r1il
E-10 ' ,

(4.0) CONSERVATIVE FORCING FUNCTIONS

The variational error bounds discussed so far have special significance when the forcing funtion F
is in fact conservative. When this is the case, one can write [Kurdila]

Ec (r) = J0.-fL(XE e T XE ax dx ].t
0

where

EC(1 gMXE + XEKX,

C< E 2

E (0) j ~X 0 + X0KXO

As shown in IKurdial 1,2,31, one has the bounds

+ 5 icEE (0)

for some constant K. This inequality implies that

C (+ - )JJ K (X - Xe) 11: 'C2 (eE (0))

which provides a rate of convergence when the forcing term is conservative.

113



I

(5.0) CONCLUSIONS

By using standard analyses from the field of partial differential equations and linear regression, in-
novative variational estimates have been derived that allow one to monitor the fidelity of penalty
method approximations. The analysis herein is applied to linear systems and guarantees conver-
gence rates for conservative forcing functions. The results provide a qualitative distinction between
the linear and nonlinear cases: convergence of constraint norm to zero implies convergence of the
method in the linear case, while bifurcation phenomenon preclude a similar conclusion in nonlinear
simulations, unless additional assumptions regarding regularity are made.
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